Accelerated Gradient-free Neural Network Training by Multi-convex Alternating Optimization

نویسندگان

چکیده

In recent years, even though Stochastic Gradient Descent (SGD) and its variants are well-known for training neural networks, it suffers from limitations such as the lack of theoretical guarantees, vanishing gradients, excessive sensitivity to input. To overcome these drawbacks, alternating minimization methods have attracted fast-increasing attention recently. As an emerging open domain, however, several new challenges need be addressed, including 1) Convergence properties sensitive penalty parameters, 2) Slow convergence rate. We, therefore, propose a novel monotonous Deep Learning Alternating Minimization (mDLAM) algorithm deal with two challenges. Our innovative inequality-constrained formulation infinitely approximates original problem non-convex equality constraints, enabling our proof proposed mDLAM regardless choice hyperparameters. is shown achieve fast linear by Nesterov acceleration technique. Extensive experiments on multiple benchmark datasets demonstrate convergence, effectiveness, efficiency algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated gradient sliding for structured convex optimization

Our main goal in this paper is to show that one can skip gradient computations for gradient descent type methods applied to certain structured convex programming (CP) problems. To this end, we first present an accelerated gradient sliding (AGS) method for minimizing the summation of two smooth convex functions with different Lipschitz constants. We show that the AGS method can skip the gradient...

متن کامل

A conjugate gradient based method for Decision Neural Network training

Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...

متن کامل

Neural Network Training by Hybrid Accelerated Cuckoo Particle Swarm Optimization Algorithm

Metaheuristic algorithm is one of the most popular methods in solving many optimization problems. This paper presents a new hybrid approach comprising of two natures inspired metaheuristic algorithms i.e. Cuckoo Search (CS) and Accelerated Particle Swarm Optimization (APSO) for training Artificial Neural Networks (ANN). In order to increase the probability of the egg’s survival, the cuckoo bird...

متن کامل

An Accelerated Method for Derivative-Free Smooth Stochastic Convex Optimization

We consider an unconstrained problem of minimization of a smooth convex function which is only available through noisy observations of its values, the noise consisting of two parts. Similar to stochastic optimization problems, the first part is of a stochastic nature. On the opposite, the second part is an additive noise of an unknown nature, but bounded in the absolute value. In the two-point ...

متن کامل

Convolutional Neural Network and Convex Optimization

This report shows that the performance of deep convolutional neural network can be improved by incorporating convex optimization techniques. First, we find that the sub-models learned by dropout can be more effectively combined by solving a convex problem. Also, we generalize this idea to models that are not trained by dropout. Compared to traditional methods, we get an improvement of 0.22% and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2022

ISSN: ['0925-2312', '1872-8286']

DOI: https://doi.org/10.1016/j.neucom.2022.02.039